ie.geologyidea.com
More

1: Understanding Science - Geosciences

1: Understanding Science - Geosciences


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.


Learning Objectives

  • Contrast objective versus subjective observations, and quantitative versus qualitative observations
  • Identify a pseudoscience based on its lack of falsifiability
  • Contrast the methods used by Aristotle and Galileo to describe the natural environment
  • Explain the scientific method and apply it to a problem or question
  • Describe the foundations of modern geology, such as the principle of uniformitarianism
  • Contrast uniformitarianism with catastrophism
  • Explain why studying geology is important
  • Identify how Earth materials are transformed by rock cycle processes
  • Describe the steps involved in a reputable scientific study
  • Explain rhetorical arguments used by science deniers

Science is a process, with no beginning and no end. Science is never finished because a full truth can never be known. However, science and the scientific method are the best way to understand the universe we live in. Scientists draw conclusions based on objective evidence; they consolidate these conclusions into unifying models. Geologists likewise understand studying the Earth is an ongoing process, beginning with James Hutton who declared the Earth has “…no vestige of a beginning, no prospect of an end.” Geologists explore the 4.5 billion-year history of Earth, its resources, and its many hazards. From a larger viewpoint, geology can teach people how to develop credible conclusions, as well as identify and stop misinformation.

  • 1.1: What is Science?
    Scientists seek to understand the fundamental principles that explain natural patterns and processes. Science is more than just a body of knowledge, science provides a means to evaluate and create new knowledge without bias. Scientists use objective evidence over subjective evidence, to reach sound and logical conclusions. An objective observation is without personal bias and the same by all individuals.
  • 1.2: The Scientific Method
    Modern science is based on the scientific method. It is a procedure that follows these steps: 1) Formulate a question or observe a problem 2) Apply objective experimentation and observation 3) Analyze collected data and interpret results 4) Devise an evidence-based theory 5) Submit findings to peer review and/or publication.
  • 1.3: Early Scientific Thought
    Western scientific thought began in the ancient city of Athens, Greece. Athens was governed as a democracy, which encouraged individuals to think independently, at a time when most civilizations were ruled by monarchies or military conquerors. Foremost among the early philosopher/scientists to use empirical thinking was Aristotle, born in 384 BCE. Empiricism emphasizes the value of evidence gained from experimentation and observation.
  • 1.4: Foundations of Modern Geology
    As part of the scientific revolution in Europe, modern geologic principles developed in the 17th and 18th centuries. One major contributor was Nicolaus Steno (1638-1686), a Danish priest who studied anatomy and geology. Steno was the first to propose the Earth’s surface could change over time. He suggested sedimentary rocks, such as sandstone and shale, originally formed in horizontal layers with the oldest on the bottom and progressively younger layers on top.
  • 1.5: The Study of Geology
    Geologists apply the scientific method to learn about Earth’s materials and processes. Geology plays an important role in society; its principles are essential to locating, extracting, and managing natural resources; evaluating environmental impacts of using or extracting these resources; as well as understanding and mitigating the effects of natural hazards.
  • 1.6: Science Denial and Evaluating Sources
    Introductory science courses usually deal with accepted scientific theory and do not include opposing ideas, even though these alternate ideas may be credible. This makes it easier for students to understand complex material. Advanced students will encounter more controversies as they continue to study their discipline. This section focuses on how to identify evidence-based information and differentiate it from pseudoscience.

Thumbnail: Sunset at Delicate Arch (Arches National Park, Utah). Image used with permission (CC-SA-BY; 3.0; Palacemusic).


1: Understanding Science - Geosciences

You have been tasked with creating a brochure on geology to hand out at a high school career day event. The goal is to inform students what geology is, what types of careers geologists use and why they need a good foundation in science if they want to be a geologist.

Basic Requirements (assignment criteria):

Prepare a brochure or flyer that clearly and accurately informs the students about the field of geology. The brochure of flyer should include:

  • An introduction with a clear understanding and definition of geology
  • A section describing what geologists can do or the various fields (at least 3) geologists can be a part of
  • Conclude with a discussion as to why a solid understanding of science and the scientific method is needed

Be creative with your brochure. You can use the following formats: Word, PDF, PPT or Publisher files.

Make sure you cite and reference any sources that you use. Remember to not only list references but cite WITHIN the text itself.


Grand Challenges

Grand Challenge 1 : What are ways to further develop current, and to discover new, ways of understanding critical concepts for developing Earth Systems thinking on processes from the surface to the core, and links to other Earth system components?

Historically, Earth science education at the secondary level has not instilled a deep understanding of Earth science concepts nor strong connections to other science content areas this affects students' conceptual understanding in undergraduate geology coursework. If students have misconceptions about fundamental components of the solid Earth, then the complexity of solid Earth systems and their connections to other Earth systems will continually be beyond their grasp, and these misconceptions will become an impediment to further learning.

Grand Challenge 2: What is the optimal learning progression (i.e., conceptual scope and sequence) in an undergraduate geology degree program to best support growth in conceptual understanding and career preparation?

The undergraduate curriculum in the geosciences follows a general pattern that is governed largely by faculty expertise and workforce expectations, but is not necessarily well-informed by students' prior knowledge and naïve ideas. There is little empirical information that supports the notion that a traditional approach to the undergraduate geoscience curricular design meets the needs of majors or non-majors. Learning progressions are an approach to understanding the construction of learning environments, which can provide a structure for what should be learned about a topic and the sequence of topic components of increasing complexity. Geoscience education research can, and should, inform the development of optimal learning progressions.

References

National Research Council. 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas, Washington, DC: The National Academies Press.


Earth Science Careers

If you are a pre-college student, you can start preparing for a career in Earth science by enrolling in the college preparation program and doing well in all of your courses. Science courses are especially important, but math, writing, and other disciplines are also used by Earth scientists during every working day.

Some universities have Earth Science programs but most offer more specific training in programs such as geology, meteorology, oceanography or astronomy. In these programs you will be required to take some challenging courses such as chemistry, physics, biology and math. Earth science is an integrated science, and professionals in that field must solve problems that require a knowledge of several fields of science.

If you already have a degree in another discipline such as biology, chemistry, geography, or physics, you might be able to go to graduate school and obtain a Master's degree in one of the Earth sciences. That will most likely require taking some undergraduate courses to meet program entry requirements. However, if you have a strong interest in Earth science it is probably worth doing.

At present, job opportunities in many areas of the Earth sciences are better than average. Opportunities in geology are especially good.

Visit the website of a school that offers a geology degree, get in touch with the geology department, let them know you are interested and make arrangements to visit the campus. Don't be hesitant. Good schools and professors want to be contacted by interested students.


1.1 The Science of Biology

By the end of this section, you will be able to do the following:

  • Identify the shared characteristics of the natural sciences
  • Summarize the steps of the scientific method
  • Compare inductive reasoning with deductive reasoning
  • Describe the goals of basic science and applied science

What is biology? In simple terms, biology is the study of life. This is a very broad definition because the scope of biology is vast. Biologists may study anything from the microscopic or submicroscopic view of a cell to ecosystems and the whole living planet (Figure 1.2). Listening to the daily news, you will quickly realize how many aspects of biology we discuss every day. For example, recent news topics include Escherichia coli (Figure 1.3) outbreaks in spinach and Salmonella contamination in peanut butter. Other subjects include efforts toward finding a cure for AIDS, Alzheimer’s disease, and cancer. On a global scale, many researchers are committed to finding ways to protect the planet, solve environmental issues, and reduce the effects of climate change. All of these diverse endeavors are related to different facets of the discipline of biology.

The Process of Science

Biology is a science, but what exactly is science? What does the study of biology share with other scientific disciplines? We can define science (from the Latin scientia, meaning “knowledge”) as knowledge that covers general truths or the operation of general laws, especially when acquired and tested by the scientific method. It becomes clear from this definition that applying scientific method plays a major role in science. The scientific method is a method of research with defined steps that include experiments and careful observation.

We will examine scientific method steps in detail later, but one of the most important aspects of this method is the testing of hypotheses by means of repeatable experiments. A hypothesis is a suggested explanation for an event, which one can test. Although using the scientific method is inherent to science, it is inadequate in determining what science is. This is because it is relatively easy to apply the scientific method to disciplines such as physics and chemistry, but when it comes to disciplines like archaeology, psychology, and geology, the scientific method becomes less applicable as repeating experiments becomes more difficult.

These areas of study are still sciences, however. Consider archaeology—even though one cannot perform repeatable experiments, hypotheses may still be supported. For instance, an archaeologist can hypothesize that an ancient culture existed based on finding a piece of pottery. He or she could make further hypotheses about various characteristics of this culture, which could be correct or false through continued support or contradictions from other findings. A hypothesis may become a verified theory. A theory is a tested and confirmed explanation for observations or phenomena. Therefore, we may be better off to define science as fields of study that attempt to comprehend the nature of the universe.

Natural Sciences

What would you expect to see in a museum of natural sciences? Frogs? Plants? Dinosaur skeletons? Exhibits about how the brain functions? A planetarium? Gems and minerals? Maybe all of the above? Science includes such diverse fields as astronomy, biology, computer sciences, geology, logic, physics, chemistry, and mathematics (Figure 1.4). However, scientists consider those fields of science related to the physical world and its phenomena and processes natural sciences . Thus, a museum of natural sciences might contain any of the items listed above.

There is no complete agreement when it comes to defining what the natural sciences include, however. For some experts, the natural sciences are astronomy, biology, chemistry, earth science, and physics. Other scholars choose to divide natural sciences into life sciences , which study living things and include biology, and physical sciences , which study nonliving matter and include astronomy, geology, physics, and chemistry. Some disciplines such as biophysics and biochemistry build on both life and physical sciences and are interdisciplinary. Some refer to natural sciences as “hard science” because they rely on the use of quantitative data. Social sciences that study society and human behavior are more likely to use qualitative assessments to drive investigations and findings.

Not surprisingly, the natural science of biology has many branches or subdisciplines. Cell biologists study cell structure and function, while biologists who study anatomy investigate the structure of an entire organism. Those biologists studying physiology, however, focus on the internal functioning of an organism. Some areas of biology focus on only particular types of living things. For example, botanists explore plants, while zoologists specialize in animals.

Scientific Reasoning

One thing is common to all forms of science: an ultimate goal “to know.” Curiosity and inquiry are the driving forces for the development of science. Scientists seek to understand the world and the way it operates. To do this, they use two methods of logical thinking: inductive reasoning and deductive reasoning.

Inductive reasoning is a form of logical thinking that uses related observations to arrive at a general conclusion. This type of reasoning is common in descriptive science. A life scientist such as a biologist makes observations and records them. These data can be qualitative or quantitative, and one can supplement the raw data with drawings, pictures, photos, or videos. From many observations, the scientist can infer conclusions (inductions) based on evidence. Inductive reasoning involves formulating generalizations inferred from careful observation and analyzing a large amount of data. Brain studies provide an example. In this type of research, scientists observe many live brains while people are engaged in a specific activity, such as viewing images of food. The scientist then predicts the part of the brain that “lights up” during this activity to be the part controlling the response to the selected stimulus, in this case, images of food. Excess absorption of radioactive sugar derivatives by active areas of the brain causes the various areas to "light up". Scientists use a scanner to observe the resultant increase in radioactivity. Then, researchers can stimulate that part of the brain to see if similar responses result.

Deductive reasoning or deduction is the type of logic used in hypothesis-based science. In deductive reasoning, the pattern of thinking moves in the opposite direction as compared to inductive reasoning. Deductive reasoning is a form of logical thinking that uses a general principle or law to predict specific results. From those general principles, a scientist can deduce and predict the specific results that would be valid as long as the general principles are valid. Studies in climate change can illustrate this type of reasoning. For example, scientists may predict that if the climate becomes warmer in a particular region, then the distribution of plants and animals should change.

Both types of logical thinking are related to the two main pathways of scientific study: descriptive science and hypothesis-based science. Descriptive (or discovery) science , which is usually inductive, aims to observe, explore, and discover, while hypothesis-based science , which is usually deductive, begins with a specific question or problem and a potential answer or solution that one can test. The boundary between these two forms of study is often blurred, and most scientific endeavors combine both approaches. The fuzzy boundary becomes apparent when thinking about how easily observation can lead to specific questions. For example, a gentleman in the 1940s observed that the burr seeds that stuck to his clothes and his dog’s fur had a tiny hook structure. On closer inspection, he discovered that the burrs’ gripping device was more reliable than a zipper. He eventually experimented to find the best material that acted similarly, and produced the hook-and-loop fastener popularly known today as Velcro. Descriptive science and hypothesis-based science are in continuous dialogue.

The Scientific Method

Biologists study the living world by posing questions about it and seeking science-based responses. Known as scientific method, this approach is common to other sciences as well. The scientific method was used even in ancient times, but England’s Sir Francis Bacon (1561–1626) first documented it (Figure 1.5). He set up inductive methods for scientific inquiry. The scientific method is not used only by biologists researchers from almost all fields of study can apply it as a logical, rational problem-solving method.

The scientific process typically starts with an observation (often a problem to solve) that leads to a question. Let’s think about a simple problem that starts with an observation and apply the scientific method to solve the problem. One Monday morning, a student arrives at class and quickly discovers that the classroom is too warm. That is an observation that also describes a problem: the classroom is too warm. The student then asks a question: “Why is the classroom so warm?”

Proposing a Hypothesis

Recall that a hypothesis is a suggested explanation that one can test. To solve a problem, one can propose several hypotheses. For example, one hypothesis might be, “The classroom is warm because no one turned on the air conditioning.” However, there could be other responses to the question, and therefore one may propose other hypotheses. A second hypothesis might be, “The classroom is warm because there is a power failure, and so the air conditioning doesn’t work.”

Once one has selected a hypothesis, the student can make a prediction. A prediction is similar to a hypothesis but it typically has the format “If . . . then . . . .” For example, the prediction for the first hypothesis might be, “If the student turns on the air conditioning, then the classroom will no longer be too warm.”

Testing a Hypothesis

A valid hypothesis must be testable. It should also be falsifiable , meaning that experimental results can disprove it. Importantly, science does not claim to “prove” anything because scientific understandings are always subject to modification with further information. This step—openness to disproving ideas—is what distinguishes sciences from non-sciences. The presence of the supernatural, for instance, is neither testable nor falsifiable. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. Each experiment will have one or more variables and one or more controls. A variable is any part of the experiment that can vary or change during the experiment. The control group contains every feature of the experimental group except it is not given the manipulation that the researcher hypothesizes. Therefore, if the experimental group's results differ from the control group, the difference must be due to the hypothesized manipulation, rather than some outside factor. Look for the variables and controls in the examples that follow. To test the first hypothesis, the student would find out if the air conditioning is on. If the air conditioning is turned on but does not work, there should be another reason, and the student should reject this hypothesis. To test the second hypothesis, the student could check if the lights in the classroom are functional. If so, there is no power failure and the student should reject this hypothesis. The students should test each hypothesis by carrying out appropriate experiments. Be aware that rejecting one hypothesis does not determine whether or not one can accept the other hypotheses. It simply eliminates one hypothesis that is not valid (Figure 1.6). Using the scientific method, the student rejects the hypotheses that are inconsistent with experimental data.

While this “warm classroom” example is based on observational results, other hypotheses and experiments might have clearer controls. For instance, a student might attend class on Monday and realize she had difficulty concentrating on the lecture. One observation to explain this occurrence might be, “When I eat breakfast before class, I am better able to pay attention.” The student could then design an experiment with a control to test this hypothesis.

In hypothesis-based science, researchers predict specific results from a general premise. We call this type of reasoning deductive reasoning: deduction proceeds from the general to the particular. However, the reverse of the process is also possible: sometimes, scientists reach a general conclusion from a number of specific observations. We call this type of reasoning inductive reasoning, and it proceeds from the particular to the general. Researchers often use inductive and deductive reasoning in tandem to advance scientific knowledge (Figure 1.7). In recent years a new approach of testing hypotheses has developed as a result of an exponential growth of data deposited in various databases. Using computer algorithms and statistical analyses of data in databases, a new field of so-called "data research" (also referred to as "in silico" research) provides new methods of data analyses and their interpretation. This will increase the demand for specialists in both biology and computer science, a promising career opportunity.

Visual Connection

In the example below, the scientific method is used to solve an everyday problem. Match the scientific method steps (numbered items) with the process of solving the everyday problem (lettered items). Based on the results of the experiment, is the hypothesis correct? If it is incorrect, propose some alternative hypotheses.

1. Observation a. There is something wrong with the electrical outlet.
2. Question b. If something is wrong with the outlet, my coffeemaker also won’t work when plugged into it.
3. Hypothesis (answer) c. My toaster doesn’t toast my bread.
4. Prediction d. I plug my coffee maker into the outlet.
5. Experiment e. My coffeemaker works.
6. Result f. Why doesn’t my toaster work?

Visual Connection

Decide if each of the following is an example of inductive or deductive reasoning.

  1. All flying birds and insects have wings. Birds and insects flap their wings as they move through the air. Therefore, wings enable flight.
  2. Insects generally survive mild winters better than harsh ones. Therefore, insect pests will become more problematic if global temperatures increase.
  3. Chromosomes, the carriers of DNA, are distributed evenly between the daughter cells during cell division. Therefore, each daughter cell will have the same chromosome set as the mother cell.
  4. Animals as diverse as humans, insects, and wolves all exhibit social behavior. Therefore, social behavior must have an evolutionary advantage.

The scientific method may seem too rigid and structured. It is important to keep in mind that, although scientists often follow this sequence, there is flexibility. Sometimes an experiment leads to conclusions that favor a change in approach. Often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion. Instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests. Notice, too, that we can apply the scientific method to solving problems that aren’t necessarily scientific in nature.

Two Types of Science: Basic Science and Applied Science

The scientific community has been debating for the last few decades about the value of different types of science. Is it valuable to pursue science for the sake of simply gaining knowledge, or does scientific knowledge only have worth if we can apply it to solving a specific problem or to bettering our lives? This question focuses on the differences between two types of science: basic science and applied science.

Basic science or “pure” science seeks to expand knowledge regardless of the short-term application of that knowledge. It is not focused on developing a product or a service of immediate public or commercial value. The immediate goal of basic science is knowledge for knowledge’s sake, although this does not mean that, in the end, it may not result in a practical application.

In contrast, applied science or “technology,” aims to use science to solve real-world problems, making it possible, for example, to improve a crop yield, find a cure for a particular disease, or save animals threatened by a natural disaster (Figure 1.8). In applied science, the problem is usually defined for the researcher.

Some individuals may perceive applied science as “useful” and basic science as “useless.” A question these people might pose to a scientist advocating knowledge acquisition would be, “What for?” However, a careful look at the history of science reveals that basic knowledge has resulted in many remarkable applications of great value. Many scientists think that a basic understanding of science is necessary before researchers develop an application, therefore, applied science relies on the results that researchers generate through basic science. Other scientists think that it is time to move on from basic science in order to find solutions to actual problems. Both approaches are valid. It is true that there are problems that demand immediate attention however, scientists would find few solutions without the help of the wide knowledge foundation that basic science generates.

One example of how basic and applied science can work together to solve practical problems occurred after the discovery of DNA structure led to an understanding of the molecular mechanisms governing DNA replication. DNA strands, unique in every human, are in our cells, where they provide the instructions necessary for life. When DNA replicates, it produces new copies of itself, shortly before a cell divides. Understanding DNA replication mechanisms enabled scientists to develop laboratory techniques that researchers now use to identify genetic diseases, pinpoint individuals who were at a crime scene, and determine paternity. Without basic science, it is unlikely that applied science could exist.

Another example of the link between basic and applied research is the Human Genome Project, a study in which researchers analyzed and mapped each human chromosome to determine the precise sequence of DNA subunits and each gene's exact location. (The gene is the basic unit of heredity represented by a specific DNA segment that codes for a functional molecule. An individual’s complete collection of genes is his or her genome.) Researchers have studied other less complex organisms as part of this project in order to gain a better understanding of human chromosomes. The Human Genome Project (Figure 1.9) relied on basic research with simple organisms and, later, with the human genome. An important end goal eventually became using the data for applied research, seeking cures and early diagnoses for genetically related diseases.

While scientists usually carefully plan research efforts in both basic science and applied science, note that some discoveries are made by serendipity , that is, by means of a fortunate accident or a lucky surprise. Scottish biologist Alexander Fleming discovered penicillin when he accidentally left a petri dish of Staphylococcus bacteria open. An unwanted mold grew on the dish, killing the bacteria. Fleming's curiosity to investigate the reason behind the bacterial death, followed by his experiments, led to the discovery of the antibiotic penicillin, which is produced by the fungus Penicillium. Even in the highly organized world of science, luck—when combined with an observant, curious mind—can lead to unexpected breakthroughs.

Reporting Scientific Work

Whether scientific research is basic science or applied science, scientists must share their findings in order for other researchers to expand and build upon their discoveries. Collaboration with other scientists—when planning, conducting, and analyzing results—is important for scientific research. For this reason, important aspects of a scientist’s work are communicating with peers and disseminating results to peers. Scientists can share results by presenting them at a scientific meeting or conference, but this approach can reach only the select few who are present. Instead, most scientists present their results in peer-reviewed manuscripts that are published in scientific journals. Peer-reviewed manuscripts are scientific papers that a scientist’s colleagues or peers review. These colleagues are qualified individuals, often experts in the same research area, who judge whether or not the scientist’s work is suitable for publication. The process of peer review helps to ensure that the research in a scientific paper or grant proposal is original, significant, logical, and thorough. Grant proposals, which are requests for research funding, are also subject to peer review. Scientists publish their work so other scientists can reproduce their experiments under similar or different conditions to expand on the findings.

A scientific paper is very different from creative writing. Although creativity is required to design experiments, there are fixed guidelines when it comes to presenting scientific results. First, scientific writing must be brief, concise, and accurate. A scientific paper needs to be succinct but detailed enough to allow peers to reproduce the experiments.

The scientific paper consists of several specific sections—introduction, materials and methods, results, and discussion. This structure is sometimes called the “IMRaD” format. There are usually acknowledgment and reference sections as well as an abstract (a concise summary) at the beginning of the paper. There might be additional sections depending on the type of paper and the journal where it will be published. For example, some review papers require an outline.

The introduction starts with brief, but broad, background information about what is known in the field. A good introduction also gives the rationale of the work. It justifies the work carried out and also briefly mentions the end of the paper, where the researcher will present the hypothesis or research question driving the research. The introduction refers to the published scientific work of others and therefore requires citations following the style of the journal. Using the work or ideas of others without proper citation is plagiarism .

The materials and methods section includes a complete and accurate description of the substances the researchers use, and the method and techniques they use to gather data. The description should be thorough enough to allow another researcher to repeat the experiment and obtain similar results, but it does not have to be verbose. This section will also include information on how the researchers made measurements and the types of calculations and statistical analyses they used to examine raw data. Although the materials and methods section gives an accurate description of the experiments, it does not discuss them.

Some journals require a results section followed by a discussion section, but it is more common to combine both. If the journal does not allow combining both sections, the results section simply narrates the findings without any further interpretation. The researchers present results with tables or graphs, but they do not present duplicate information. In the discussion section, the researchers will interpret the results, describe how variables may be related, and attempt to explain the observations. It is indispensable to conduct an extensive literature search to put the results in the context of previously published scientific research. Therefore, researchers include proper citations in this section as well.

Finally, the conclusion section summarizes the importance of the experimental findings. While the scientific paper almost certainly answers one or more scientific questions that the researchers stated, any good research should lead to more questions. Therefore, a well-done scientific paper allows the researchers and others to continue and expand on the findings.

Review articles do not follow the IMRAD format because they do not present original scientific findings, or primary literature. Instead, they summarize and comment on findings that were published as primary literature and typically include extensive reference sections.


Affiliations

Keck Consortium
The Keck Consortium consists of geology departments at 17 liberal arts colleges scattered across the United States. The main sources of funding for the Consortium come from the National Science Foundation and each of the Consortium colleges.

Incorporated Research Institutions for Seismology
The Incorporated Research Institutions for Seismology is a university research consortium dedicated to exploring the Earth's interior through the collection and distribution of seismographic data. IRIS programs contribute to scholarly research, education, earthquake hazard mitigation, and the verification of a Comprehensive Test Ban Treaty.

Associated Colleges of the South
The Associated Colleges of the South is a consortium of 16 private liberal arts colleges and universities. The consortium's central office is in Atlanta, GA, while the ACS Technology Center is located at Southwestern University in Georgetown, TX.

One Trinity Place, San Antonio, TX 78212-7200

© 2020 Trinity University. All rights reserved.

Trinity prohibits harassment and discrimination based on protected status , including sexual harassment and sexual misconduct. Any person may report discrimination, sexual harassment and sexual misconduct online or by contacting Trinity's Title IX Coordinator, Angela Miranda-Clark. You may also report in person or by mail addressed to her at One Trinity Place, Northrup Hall 210Q, San Antonio, TX 78212.


Geology and Earth Sciences Jobs

Irrespective to the country, every department needs a Geology and Earth Science scientist and research analysts.

Top Job Profiles

Engineering Geologists – Engineering Geologists investigates the site before any foundation or earthworks are started for a very large civil engineering project begins. Environmental Geologists are concerned with the issues related to the disposal of waste of all its types which evaluate the environmental impact of the construction projects.

Geo-Hydrologists take care of the water. They asses and analyze the sources and identify the threats to eliminate water pollution. They play a crucial role in the construction of reservoirs.

Geomorphologists – It is a study related to erosion and glaciations. They study the process of erosion and glaciations and takes necessary remediation to eliminate the issue.

Hydrologists and Mineralogists are responsible for identifying, measuring and analyze the source of water and minerals. Mineralogist analyzes the minerals and precious stones in rocks and mineral and determines its usage in various industries.

Marine Geologists is a role who studies the physical aspects of the oceans and its current streams.

Petroleum Geologists is a very important and most demanding job role. They conduct the tests and locate the presence of the natural gas, and oil deposits both onshore and offshore sites.

Paleontologists study ancient fossils. They help in tracing the evolution of plant and animal life and estimate their existence on the earth.

Seismologists are a job role where they interpret the data of the earth tectonic moments and identify the earthquakes and earthquakes prove areas.

Stratigraphers are the study of distribution and arrangement of sedimentary rock layers of both land and the sea. They help us in understanding and having the knowledge of the layers and it’s a distribution of 5he land and sea.

Geologists– It is the most common role where the jobs main prospect is to teach and carry out academic research in universities and colleges.

Apart from these job prospects, there are some specific job roles which are designed to meet up the industry demands like

  • Environmental consultant
  • Remote sensing Specialist
  • Groundwater specialist
  • Mining or marine engineer
  • Environmental scientist
  • Marine geologist
  • Petroleum Engineer
  • Geochemist
  • Geophysicist
  • Oceanographer
  • Environmental lawyer

The Geoscience Concept Inventory

Many people ask me for access to questions that have been developed over time as part of the bank of items that evaluate geoscience understanding. Here are item sets, including links to papers, that have been evaluated using item response theory approaches. This space will be updated as new items sets become available:

  1. Geoscience Concept Inventory Item Bank
  2. Climate Change Concept Inventory Item Set
  3. Earth Systems Science Item Bank

Geoscience Concept Inventory Item Bank
A valid and reliable bank of items designed for diagnosis of alternative conceptions and assessment of learning in entry-level earth science courses. Rasch analysis was used to generate a bank of items aligned with ability.

The online testing system for the GCI is no longer active. A word document containing original GCI items is available here: GCI_v3.April2011_origGCI. Instructors and researchers are encouraged to use these items freely and without restriction. Item numbers correlate to numbers in paper reporting on GCI Rasch analysis: Libarkin, J.C., Anderson, S.W., 2006, The Geoscience Concept Inventory: Application of Rasch Analysis to Concept Inventory Development in Higher Education: in Applications of Rasch Measurement in Science Education, ed. X. Liu and W. Boone: JAM Publishers, p. 45-73: LibarkinandAnderson2006

DESCRIPTION: The Geoscience Concept Inventory (GCI) is a multiple-choice assessment instrument for use in the Earth sciences classroom. The GCI v.1.0 consisted of 69 validated questions that could be selected by an instructor to create a customized 15-question GCI subtest for use in their course. These test items cover topics related to general physical geology concepts, as well as underlying fundamental ideas in physics and chemistry, such as gravity and radioactivity, that are integral to understanding the conceptual Earth. Each question has gone through rigorous reliability and validation studies. Over TWENTY colleagues have contributed new questions to the item bank, bringing the number of available, high quality questions to almost 200.

We built the the GCI using the most rigorous methodologies available, including scale development theory, grounded theory, and item response theory (IRT). To ensure inventory validity we incorporated a mixed methods approach using advanced psychometric techniques not commonly used in developing content-specific assessment instruments. We conducted

75 interviews with college students, collected nearly 1000 open-ended questionnaires, grounded test content in these qualitative data, and piloted test items at over 40 institutions nationwide, with

5000 student participants.

In brief, the development of the GCI involved interviewing students, collecting open-ended questionnaires, generating test items based upon student responses, soliciting external review of items by both scientists and educators, pilot testing of items, analysis of items via standard factor analysis and item response theory, “Think Aloud” interviews with students during test piloting, revision, re-piloting, and re-analysis of items iteratively. Although time consuming, the resulting statistical rigor of the items on an IRT scale suggest that the methods we have used constitute highly valid practice for assessment test development.

Climate Change Concept Inventory Item Set

A valid and reliable assessment instrument designed for diagnosis of alternative conceptions and assessment of learning around climate change conceptions. Rasch analysis was used to validate the alignment of the item set with ability.

Two publications document the utility of this measure with respect to the general public and college students. Both studies considered the impact of conceptual understanding, affect and world views on risk perception.

a) College students: Aksit, O., McNeal, K., Gold, A., Libarkin, J., Harris, S., 2018, The influence of instruction, prior knowledge, and values on climate change risk perception among undergraduates: Journal of Research in Science Teaching, v. 55, p. 550–572.

Earth Systems Science Item Bank
A valid and reliable bank of items designed for diagnosis of alternative conceptions and assessment of learning around Earth’s spheres. Rasch analysis was used to evaluate the relationship of ability to items and to allow comparison of understanding within one sphere to another.


Minors & Certificate Programs

Minors for Geosciences Majors

While a minor is not required as part of any geological sciences degree program, students may choose to complete a minor in a field of study other than their major and to which they gain entry. Students may declare only one minor or certificate to supplement their Jackson School major.

Jackson School students must declare their minor/certificate intentions before they have completed 65 percent of their degree requirements, as indicated on the Interactive Degree Audit (IDA). Exceptions to these policies require prior approval by the dean.

Minors for Non-Geosciences Majors

The minors offered by the Jackson School of Geosciences promote the understanding of Earth as a system, its resources, and environment, for the lasting benefit of humankind. Any non-geosciences student with a University grade point average of at least 2.5 may apply to a JSG minor. Students must apply for admission to the minor, have it added to their degree profiles, successfully complete all requirements, and apply to graduate for it to appear on their transcript.

The Jackson School reserves the right to limit the number of students accepted to the minor. If demand exceeds space, students will be selected based on review of a student’s academic record. Acceptance into the minor does not come with preferences or guarantee of a seat in any GEO course. Registration for any of these courses will require that existing prerequisite course requirements are adequately met.

For more information, please visit the Minor and Certificate Programs section in The University chapter.


About Earth Science Week

Since October 1998, the American Geosciences Institute has organized this national and international event to help the public gain a better understanding and appreciation for the Earth sciences and to encourage stewardship of the Earth. This year's Earth Science Week will be held from October 10 - 16, 2021 and will celebrate the theme "Water Today and for the Future." The coming year's event will focus on the importance of learning how to understand, conserve, and protect water, perhaps Earth's most vital resource.

Earth Science Week 2021 learning resources and activities will engage young people and others in exploring the importance of water — and water science — for living things, Earth systems, and the many activities that people undertake. Individuals of all backgrounds, ages, and abilities will be engaged in building understanding of water's role in timely topics including energy, climate change, the environment, natural hazards, technology, industry, agriculture, recreation, and the economy.

Reaching over 50 million people annually, AGI leads Earth Science Week in cooperation with its sponsors and the geoscience community as a service to the public. Each October, community groups, educators, and interested citizens organize celebratory events. Earth Science Week offers opportunities to discover the Earth sciences and engage in responsible stewardship of the Earth. Details about this year's events will be announced in the coming months.

Click on the following links to see the many ways that everyone can participate in Earth Science Week!


Watch the video: u0026, Η παρακολούθηση του ηφαιστείου


Comments:

  1. Malachi

    I consider, what is it - a false way.

  2. Dobar

    Between us talking, try searching for the answer to your question on google.com

  3. Alburt

    On your place I would try to solve this problem itself.

  4. Nern

    I would like to

  5. Rickard

    5-point - C grade.



Write a message